Tektonik dan geomorfologi

Leave a comment

Bentukan asal struktur/structure (S) adalah bentangalam yang dibentuk oleh kegiatan tektonik, dalam skala yang lebih rinci akan memberikan kenampakan morfologi struktur, antara lain: pematang pebukitan sesar (horst) , lembah sesar (graben), telaga sesar (sagpond), gawir sesar (fault scarp), plateau , pebukitan siklin/antiklin, lembah siklin/antiklin , pebukitan homoklin, dsb.

STRUKTUR GEOLOGI / BATUAN

  1. Struktur perlapisan
  2. Struktur perlipatan
  3. Struktur kekar
  4. Struktur sesar
  5. Struktur ketidakselarasan

Struktur perlapisan

1.       Antiklin

Adanya perulangan perbedaan kekerasan batuan (lapisan batuan), rona, tekstur, pola pengaliran radial, annular & mungkin sentripetal, umumnya memperlihatkan perbeda-an jurus & kemiringan lapisan.

2.       Sinklin

Adanya perulangan perbedaan kekerasan batuan (lapisan batuan), rona, tekstur, pola pengaliran sentripetal maupun trelis, umumnya memperlihat-kan adanya perbedaan jurus dan kemiringan yang berlawanan.

 

 

Bentangalam Daerah Terlipat

Pada waktu pembentukannya batuan endapan berada dalam keadaan mendatar / horisontal.

Keanekaragaman bahan mempengaruhi proses pengendapan sehingga akan terbentuk berlapis-lapis & perlapisannya terletak secara horisontal.

Dalam posisi normal makin ke arah atas letaknya maka dengan sendirinya makin muda (hukum superposisi)

Bila tenaga asal dalam (endogen) bekerja maka batuan endapan akan mengalami gangguan.

Mungkin letaknya tidak horisontal lagi atau justru terlipat membentuk lipatan (fold) baik antiklin maupun sinklin, bahkan tersesarkan (fault).

Akibat kekerasan batuan endapan yang berlain-an antara satu lapisan dengan lapisan lainnya, maka akan membentuk bentangalam yang khas

Erosi berperan pada bagian yang lemah yaitu pada batuan lunak dan bagian yang keras akan menonjol membentuk bukit-bukit.

Biasanya bukit ini memanjang sejajar dengan arah pelapisan.

Daerah-daerah terlipat di Indonesia pada umumnya merupakan tempat terkumpulnya (perangkap) minyak bumi. Contoh:

Sepanjang Sumatera sebelah Timurlaut,

Rembang,

Madura-Kangean, dan

Kalimantan Timur.

Daerah yang membentuk dome (kubah garam) di Pantai Teluk Meksiko (Amerika) dan Iran sangat terkenal sebagai tempat terkumpulnya minyak bumi.

 

 

Struktur kekar

Biasanya dicirikan oleh adanya pola pengaliran rektangular, annular mau-pun angulate. Struktur kekar dapat ter-jadi pada batuan sedimen, batuan beku dan batuan metamorf

Struktur sesar

Struktur sesar pada umumnya ditunjukkan oleh:

•          True fault scrap (tebing-tebing yang terbentuk oleh sesar)

•          Fault line scrap (bekas erosi true fault scrap)

•          Obsequent fault line scrap (erosi lanjut mem-bentuk tebing curam dengan kemiringan berla-wanan bidang patahan)

•          Danau-danau pada suatu garis lurus

•          Jeram-jeram

•          Pola pengaliran trellis

•          Pola pengaliran paralel

•          Adanya “off-set” dari aliran sungai

•          Struktur ketidakselarasan

 

•          Ketidakselarasan dapat terlihat pada foto udara, apabila berdimensi cukup besar.

•          Ketidakselarasan yang terlihat pada foto udara adalah ketidakselarasan bersudut (angular un-corformity).

•          Bidang ketidakselarasan biasanya ditunjukkan oleh perbedaan menyolok jurus dan kemiringan batuan, perbedaan rona dan tekstur jenis batuan yang berbeda.

 

By IMMANUEL VARIANT RUMENDE

270110090062

 

Proses Proses Geomorfologi

Leave a comment

1. Pelapukan

 

Pelapukan adalah proses disintegrasi secara berangsur dari material penyusun kulit bumi yang berupa batuan. Pelapukan sangat dipengaruhi oleh kondisi iklim , temperatur serta komposisi mineral-mineral batuan.

Dalam Geomorfologi, denudasi adalah istilah yang dipakai untuk mengindikasikan lepasnya material – material melalui proses erosi dan pelapukan yang berakibat pada berkurangnya ketinggian (elevasi) dan relief dari bentuk lahan serta bentang alam. Proses eksogenik (kerja air, es, dan angin) adalah faktor yang mendominasi proses denudasi. Denudasi dapat mengakibatkan lepasnya partikel- partikel yang berbentuk padat maupun material yang berupa larutan. Secara geomorfologi , pelapukan mekanis dan pelapukan kimiawi mempunyai hubungan dengan pembentukkan bentang alam.

Pelapukan mekanis adalah semua mekanisme yang dapat mengakibatkan terjadinya proses pelapukan sehingga suatu batuan dapat hancur menjadi beberapa bagian yang lebih kecil partikel-partikel yang lebih halus. Mekanisme dari proses pelapukan mekanis antara lain adalah abrasi, kristalisasi es (pembekuan air) dalam batuan, perubahan panas secara cepat (thermal fracture) , proses hidrasi, dan eksfoliasi/pengelupasan yang disebabkan pelepasan tekanan pada batuan karena perubahan tekanan.

 

Pelapukan kimiawi (dikenal juga sebagai proses dekomposisi atau proses peluruhan) adalah terurai/pecahnya batuan melalui mekanisme kimiawi, seperti karbonisasi, hidrasi, hidrolisis, oksidasi dan pertukaran ion-ion dalam larutan.  Pelapukan kimiawi merubah komposisi mineral mineral dalam batuan menjadi mineral permukaan seperti mineral lempung. Mineral-mineral yang tidak stabil yang terdapat dalam batuan akan dengan mudah mengalami pelapukan apabila berada dipermukaan bumi, seperti basalt dan peridotit. Air merupakan agen yang sangat penting dalam terhadinya proses pelapukan kimia, seperti pengelupasan cangkang (speriodal weathering) pada batuan.

 

Pelapukan organis dikenal juga sebagai pelapukan biologis dan merupakan istilah yang umum dipakai untuk menjelaskan proses pelapukan biologis yang terjadi pada penghancuran batuan, termasuk proses penetrasi akar tumbuhan kedalam batuan dan aktivitas organisme dalam membuat lubang-lubang pada batuan (bioturbation), termasuk didalamnya aksi dari berbagai jenis asam yang ada dalam mineral melalui proses leaching. Pada hakekatnya pelapukan organis merupakan perpaduan antara proses pelapukan mekanis dan pelapukan kimiawi.

 

Hasil akhir dari ketiga jenis pelapukan batuan tersebut diatas dikenal sebagai soil (tanah). Karena tanah merupakan hasil dari pelapukan batuan maka berbagai jenis tanah, seperti Andosol, Latosol atau Laterit tergantung pada jenis batuan asalnya.

Proses pelapukan, baik secara mekanis yang disebabkan antara lain oleh perubahan temperatur panas , dingin, angin, hujan, es, pembekuan pada batuan menyebabkan batuan induk mengalami disintegrasi (perombakan) menjadi bagian yang lebih kecil, sedangkan proses kimiawi yang disebabkan oleh larutan asam, kelembaban merubah mineral-mineral menjadi ion-ion, oksidasi besi dan alumina, mineral silika akan menghasilkan lapisan lapisan lempung.

 

 

 

 

Tabel 2.1  Produk Pelapukan Mineral Pembentuk Batuan

 

Mineral Asal Dalam Pengaruh CO2 dan  H2O Hasil Utama

( Padat )

Hasil Lainnya   (Larutan)
Feldspar Mineral lempung  (Na) Na+, Ca2+, K+, SO2
Mineral Fero-magnesium (termasuk biotit dan mika) Mineral lempung  (Na) Na+, Ca2+, K+, SO2, Mg2+, Fe2+
Muscovit Mineral lempung  (K) K+, SO2
Kuarsa Butiran pasir -
Kalsit Ca Ca2+, HCO3

 

 

 

2. Erosi

Erosi adalah istilah umum yang dipakai untuk proses penghancuran batuan (pelapukan) dan proses pengangkutan hasil penghancuran batuan. Proses erosi fisika disebut sebagai proses corration (erosi mekanis) sedangkan proses erosi kimia disebut dengan corrosion. Agen dari proses erosi adalah gaya gravitasi, air, es, dan angin. Berdasarkan bentuk dan ukurannya, erosi dapat dibagi menjadi 5 (lima) yaitu:

 

 

  • Erosi alur (Riil erosion)

Erosi alur adalah proses pengikisan yang terjadi pada permukaan tanah (terain) yang disebabkan oleh hasil kerja air berbentuk alur-alur dengan ukuran berkisar antara beberapa milimeter hingga beberapa centimeter. Pada dasarnya erosi alur merupakan tahap awal dari hasil erosi air yang mengikis permukaan tanah (terrain) membentuk alur-alur sebagai tempat mengalirnya air. Pada perkembangannya erosi alur akan berkembang menjadi erosi ravine.

Erosi alur berupa alur-alur kecil dengan lebar alur berkisar beberapa centimeter dan terbentuk akibat erosi air.

  • Erosi Berlembar (Sheet Erosion)

Erosi berlembar adalah proses pengikisan air yang terjadi pada permukaan tanah yang searah dengan bidang permukaan tanah, biasanya terjadi pada lereng-lereng bukit yang vegetasinya jarang atau gundul.

  • Erosi drainase (ravine Erosion)

Erosi drainase  adalah proses pengikisan yang disebabkan oleh kerja air pada permukaan tanah (terrain) yang membentuk saluran-saluran dengan lembah-lembah salurannya berukuran antara beberapa centimeter hinggga satu meter.

  • Erosi saluran (gully erosion)

Erosi saluran adalah erosi yang disebabkan oleh hasil kerja air pada permukaan tanah membentuk saluran-saluran dengan ukuran lebar lembahnya lebih besar 1 (satu) meter hingga beberapa meter.

  • Erosi lembah (valley erosion)

Erosi lembah adalah proses dari kerja air pada permukaan tanah (terrain) yang berbentuk saluran-saluran dengan ukuran lebarnya diatas sepuluh meter.

3. Mass Wasting

Mass Wasting adalah semua pengangkutan massa puing batuan     menuruni lereng akibat pengaruh langsung tenaga gravitasi melalui proses rayapan (creep), luncuran (slides), aliran (flows), rebah (topples), dan jatuhan (falls). Mass wasting umumnya terjadi di daratan maupun di lautan terutama di lereng benua.

4. Sedimentasi

Sedimentasi adalah suatu proses pengendapan material yang ditranport oleh media air, angin, es/gletser di suatu cekungan. Delta yang terdapat di mulut-mulut sungai adalah hasil dari proses pengendapan material-material yang diangkut oleh air sungai, sedangkan Sand Dunes yang terdapat di gurun-gurun dan di tepi pantai adalah hasil dari pengendapan material – material yang diangkut oleh angin.

Bentangalam yang ada saat ini adalah hasil dari proses proses geologi yang terjadi di masa lampau. Pada saat ini proses proses geologi (endogenik dan eksogenik) tetap berlangsung dan secara berlahan dan pasti akan merubah bentuk bentang alam yang ada saat ini. Proses proses eksogen yang terjadi di permukaan bumi dapat dikelompokkan berdasarkan agen/media yang mempengaruhinya, yaitu air, angin, gletser dan iklim

Agen Geomorfologi

Proses proses utama yang bertanggungjawab yang terjadi di permukaan bumi untuk kebanyakan bentuk-bentuk permukaan bumi adalah angin, gelombang, pelapukan, mass wasting, air bawah tanah, air permukaan, gletser, tektonik dan volkanisme. Apabila air jatuh keatas permukaan bumi, maka beberapa kemungkinan dapat terjadi. Air akan terkumpul sebagai tumpukan salju didaerah-daerah  puncak pegunungan yang tinggi atau sebagai gletser. Ada pula yang terkumpul didanau-danau. Yang jatuh menimpa tumbuh- tumbuhan dan tanah, akan menguap kembali kedalam atmosfir atau diserap oleh tanah melalui

akar-akar tanaman, atau mengalir melalui sistim sungai atau aliran bawah tanah.

 

 

1. Proses Sungai (Fluvial Process)

Sungai dan cabang-cabang sungai tidak saja hanya mengangkut air, tetapi juga sedimen. Air yang mengalir di saluran disepanjang saluran sungai, mampu memobilisasi sedimen dan mengangkutnya kebagian hilir, baik yang berbentuk bed load (partikel berukura kasar), suspended load (partikel berukuran halus) atau dissolved load (partikel yang larut dalam air). Kecepatan pengangkutan sedimen sangat tergantung ketersediaan sedimen itu sendiri serta material sedimen yang masuk kedalam sungai. Sebagaimana aliran sungai yang mengalir pada berbagai tipe bentangalam, dan umumnya meningkat dalam ukurannya sebagai akibat dari bersatunya anak-anak sungai ke sungai induknya. Jaringan sungai ini kemudian membentuk suatu sistem aliran  yang sering disebut dengan dendritik, atau mengadopsi dengan pola lainnya tergantung pada topografi regional dan kondisi geologi yang mendasarinya. Diatas permukaan Bumi, air akan mengalir melalui jaringan pola aliran sungai menuju bagian- bagian yang rendah. Setiap pola aliran mempunyai daerah pengumpulan air yang dikenal

Sebagai daerah aliran sungai  atau disingkat sebagai DAS atau  drainage basin . Setiap DAS dibatasi dari DAS disebelahnya oleh suatu tinggian topografi yang dinamakan pemisah aliran (drainage divide). Dengan digerakkan oleh gayaberat, air hujan yang jatuh dimulai dari daerah pemisah aliran akan mengalir melalui lereng sebagai lapisan lebar berupa air-bebas dengan ketebalan hanya beberapa Cm saja yang membentuk alur-alur kecil. Dari sini air akan bergabung dengan sungai baik melalui permukaan atau sistim air bawah permukaan. Dalam perjalanannya melalui cabang-cabangnya menuju ke sungai utama dan kemudian

bermuara di laut, air yang mengalir dipermukaan melakukan kegiatan-kegiatan mengikis, mengangkut dan mengendapkan bahan-bahan yang dibawanya. Meskipun sungai-sungai yang ada dimuka bumi ini hanya mengangkut kira-kira 1/1000.000 dari jumlah air yang ada di Bumi, namun ia merupakan gaya geologi yang sangat ampuh yang menyebabkan perubahan pada permukaan bumi. Hasil utama yang sangat menonjol yang dapat diamati adalah terbentuknya lembah-lembah yang dalam yang sangat menakjubkan diatas muka bumi ini.

a.   Pengikisan sungai

Cara sungai mengikis dan menoreh lembahnya adalah dengan cara (1) abrasi,  (2)merenggut dan mengangkat bahan-bahan yang lepas, (3) dengan pelarutan. Cara yang pertama atau abrasi merupakan kerja pengikisan oleh air yang paling menonjol yang dilakukannya dengan menggunakan bahan-bahan yang diangkutnya, seperti pasir, kerikil.

Cara lain yang dapat dilakukan  adalah dengan hydrolic lifting, yang terjadi sebagai akibat tekanan oleh air, khususnya pada arus turbelensi. Batuan yang sudah retak-retak atau menjadi lunak karena proses pelapukan, akan direnggut oleh air. Dalam keadaan tertentu air dapat ditekan dan masuk kedalam rekahan-rekahan batuan dengan kekuatan yang dahsyat yang mempunyai kemampuan yang dahsyat untuk menghancurkan batuan yang membentuk saluran atau lembah. Air juga dapat menoreh lembahnya melalui proses pelarutan, terutama apabila sungai itu mengalir melalui batuan yang mudah larut seperti batukapur.

 

 

b.   Pengangkutan oleh sungai

Sungai juga ternyata merupakan media yang mampu mengangkut sejumlah besar bahan yang terbentuk sebagai akibat proses pelapukan batuan. Banyaknya bahan yang diangkut ditentukan oleh faktor iklim dan tatanan geologi dari suatu wilayah. Meskipun bahan-bahan yang diangkut oleh sungai berasal antara lain dari hasil penorehan yang dilakukan sungai itu sendiri, tetapi ternyata yang jumlahnya paling besar adalah yang berasal dari hasil proses pelapukan batuan. Proses pelapukan ternyata menghasilkan sejumlah besar bahan yang siap untuk diangkut baik oleh sungai maupun oleh cara lain seperti gerak tanah, dan air tanah. Bagaimana cara air mengalir mengangkut bahan-bahannya akan diuraikan sebagai berikut: Dengan cara melarutkan. Jadi dalam hal ini air pengangkut berfungsi sebagai media larutan. Dengan suspensi, atau dalam keadaan bahan-bahan itu terapung  didalam air. Kebanyakan sungai-sungai (meskipun tidak semuanya) mengangkut sebahagian besar bebannya melalui cara ini, terutama sekali bahan-bahan berukuran pasir dan lempung. Tetapi pada saat banjir, bahan-bahan berukuran yang lebih besar dari itu juga dapat diangkut dengan cara demikian. Dengan cara didorong melalui dasar sungai (bed load). Agak berbeda dengan cara sebelumnya, cara ini berlangsung kadang-kadang saja, yaitu pada saat kekuatan airnya cukup besar untuk menggerakkan bahan-bahan yang terdapat di dasar sungai.

 

 

 

2. Proses Angin (Aeolian Process)

Proses Aeolian adalah proses yang disebakan oleh aktivitas angin khususnya kemampuan angin dalam merubah bentuk permukaan bumi. Angin dapat mengikis/mengerosi, mentranport, dan mengendapkan material-material, terutama sangat efektif di daerah yang vegetasinya jarang dan sebagai pemasok material sedimen yang tak terkonsolidasi. Walaupun air lebih dominan dibandingkan angin, namun proses aeolian sangat penting terutama pada lingkungan arid seperti diwilayah gurun.

 

3. Mass Wasting Process (Hillslope)

Tanah, regolith dan batuan dapat berpindah ke kaki lereng oleh gaya gravitasi dengan cara rayapan, aliran, rebahan, atau jatuhan. Mass wasting terjadi terutama di daratan maupun di lereng lereng yang berada pada bawah laut.

 

4. Proses Glasial (Glacial Process)

Secara geografis, penyebaran proses glasial terjadi di tempat tempat tertentu dan sebarannya terbatas. Proses glasial diketahui sebagai agen yang sangat efekti dalam perubahan bentangalam. Pergerakan es yang bersifat berlahan ke arah lsuatu lembah dapat menyebabkan abrasi dan gerusan pada batuan yang dilewatinya.

 

Sumber-sumber:

Bloom, Arthur., Geomorphology A systematic Analysis of late Cenozoic

Landforms, Prentice-Hall, 1978.

Noor, Djauhari., bab 2 proses proses geomorfologi, docs.docstoc.com

 

 

 

By : Andy Arifianto Saleh

270110090063

GEOMORFOLOGI

Leave a comment

Geomorfologi adalah sebuah studi ilmiah terhadap permukaan Bumi dan poses yang terjadi terhadapnya. Secara luas, berhubungan dengan landform (bentuk lahan) tererosi dari batuan yang keras, namun bentuk konstruksinya dibentuk oleh runtuhan batuan, dan terkadang oleh perolaku organisme di tempat mereka hidup. “Surface” (permukaan) jangan diartikan secara sempit; harus termasuk juga bagian kulit bumi yang paling jauh. Kenampakan subsurface terutama di daerah batugamping sangat penting dimana sistem gua terbentuk dan merupakan bagian yang integral dari geomorfologi.

Pengaruh dari erosi oleh: air, angin, dan es, berkolaborasi dengan latitude, ketinggian dan posisi relatif terhadap air laiut. Dapat dikatakan bahwa tiap daerah dengan iklim tertentu juga memiliki karakteristik pemandangan sendiri sebagai hasil dari erosi yang bekerja yang berbeda terhadap struktur geologi yang ada.

Torehan air terhadap lapisan batugamping yang keras dapat berupa aliran sungai yang permanen dan periodik, dapat juga merupakan alur drainase yang melewati bagian-bagian yang lemah. Sehingga membentuk cekungan-cekungan pada bagian yag tererosi dan meninggalkan bagian yang lebih tinggi yang susah tererosi. Ukuran dari cekungan dan tinggian ini bisa beberapa centimeter sampai beberapa kilometer.

Morfologi makro

Dibawah ini adalah beberapa bentuk morfologi permukaan karst dalam ukuran meter sampai kilometer:

  • Swallow hole : Lokasi dimana aliran permukaan seluruhnya atau sebagian mulai menjadi aliran bawah permukaan yang terdapat pada batugamping. Swallow hole yang terdapat pada polje sering disebut ponor. (Marjorie M. Sweeting, 1972). Pengertian ini dipergunakan untuk menandai tempat dimana aliran air menghilang menuju bawah tanah.
  • Sink hole : disebut juga doline, yaitu bentukan negatif yang dengan bentuk depresi atau mangkuk dengan diameter kecil sampai 1000 m lebih. (William B. White, 1988)
  • Vertical shaft : pada bentuk ideal, merupakan silinder dengan dinding vertikal merombak perlapisan melawan inclinasi perlapisan. (William B. White, 1988)
  • Collapse : runtuhan
  • Cockpit : bentuk lembah yang ada di dalam cone karst daerah tropik yang lembab. Kontur cockpit tidak melingkar seperti pada doline tetapi seperti bentuk bintang dengan sisi-sisi yang identik, yang menunjukkan bahwa formasi cone merupakan faktor penentunya. (Alfred Bogli, 1978)
  • Polje : depresi aksentip daerah karst, tertutup semua sisi, sebagian terdiri dari lantai yang rata, dengan batas-batas terjal di beberapa bagian dan dengan sudut yang nyata antara dasar/ lantai dengan tepi yang landai atau terjal itu.(Fink, Union Internationale de Speleologie)
  • Uvala : cekungan karst yang luas, dasarnya lebar tidak rata (Cjivic, 1901) : lembah yang memanjang kadang-kadang berkelak-kelok, tetapi pada umumnya dengan dasar yang menyerupai cawan. (Lehman, 1970)
  • Dry valley: terlihat seperti halnya lembah yang lainnya namun tidak ada aliran kecuali kadang-kadang setelah adanya es yang hebat diikuti oleh pencairan es yang cepat. (G.T. Warwick, 1976).
  • Pulau Jawa memiliki kawasan karst yang cukup spesifik yaitu karst Gunung Sewu, dimana bentukan bukit-bukit seperti cawan terbalik (cone hill) dan kerucut (conical hill) begitu sempurna dengan lembah-lembahnya. Bukit merupakan residu erosi dan lembahnya adalah merupakan daerah diaman terjadi erosi aktif dari dulu sampai sekarang. Bagian-bagian depresi atau cekungan merupakan titik terendah dan menghilangnya air permukaan ke bawah permukaan. Erosi memperlebar struktur (lihat geologi gua dan teori terbentuknya gua), kekar, sesar, dan bidang lapisan, dan membentuk gua-gua, baik vertikal maupun horisontal.
  • Gua-gua juga dapat terbentuk karena adanya mata air karst. Mata air (spring) karst ini ada beberapa jenis:
  • Bedding spring, mata air yang terbentuk pada tempat dimana terjadi pelebaran bidang lapisan,
  • Fracture spring, mata air yang terbentuk pada tempat dimana terjadi pelebaran bidang rekahan,
  • Contact spring, mata air yang terbentuk karena adanya kontak antara batu gamping dan batu lain yang impermiabel.
  • Disamping itu secara khusus ada jenis mata air yang berada di bawah permukaan air laut disebut dengan vrulja.

Morfologi mikro

Ada kawasan karst dengan sudut dip yang kecil dan permukaannya licin. Area ini dipisah-pisahkan dalam bentuk blok-blok oleh joint terbuka, disebut dengan grike-Bhs. Inggris, atau Kluftkarren-Bhs. Jerman. Bentukan-bentukan minor ini dalam bahasa Jerman memiliki akhiran karren (lapies-Bhs Perancis). Sering permukaan blok itu terpotong menjadi sebuah pola dendritic dari runnel dengan deretan dasar (round) dipisahkan oleh deretan punggungan (ridge) yang mengeringkannya kedalam grike terlebih dahulu. Juga terkadang mereka memiliki profil panjang yang hampir mulus. Bentukan ini disebut Rundkarren. Tipe lain adalah Rillenkarren yang memiliki saluran yang tajam, ujung punggungan dibatasi oleh deretan saluran berbentuk V. Biasanya nampak pada permukaan yag lebih curam daripada rundkarren, dengan saluran sub-paralel dan beberapa cabang. Microrillenkarren merupakan bentuk gabungan tetapi hanya memiliki panjang beberapa centimeter dan lebarnya 10-20 mm. Pseudo karren, memiliki bentuk sama dengan rundkarren dan rinnenkarren. Tetapi hanya terjadi pada granit di daerah tropik yang lembab.

GUA

Torehan air dan es adalah faktor utama yang memperlebar zonal lemah dilapisan batu gamping, sehingga terbentuk gua-gua. Ada banyak teori yang menjelaskan asal muasal terjadinya gua (teori klasik), namun sekarang sudah ada teori yang menjelaskan dan diterima secara umum. Perbedaan teori tersebut dikeluarkan oleh orang yang berasal dari kawasan karst yang berbeda, sesuai dengan karakteristik daerah tersebut. Lihat teori terbaru mengenai proses terlahirnya gua. Lihat juga speleogenesis.

GEOMORFOLOGI

October 14th, 2009 • RelatedFiled Under

Filed Under: Umum

Kata Geomorfologi (Geomorphology) berasal bahasa Yunani, yang terdiri dari tiga kata yaitu: Geos (erath/bumi), morphos (shape/bentuk), logos (knowledge atau ilmupengetahuan), maka pengertian geomorfologi merupakan pengetahuan tentang bentuk-bentuk permukaan bumi. Namun Geomorfologi bukan hanya mempelajari bentuk-bentuk muka bumi, tetapi lebih dari itu mempelajari material dan proses, seperti yang dikemukakan oleh Hooke (1988) dalamSukmantalya (1995: 1),

Secara singkat berikut ini disajikan mengenai beberapa definisi geomorfologi yang dikemukakan oleh para ahli yaitu:

1) Lobeck (1939: 3) menyatakan bahwa Geomorfologi adalah studi tentang bentuk lahan.

2) Cooke dan Doornkamp dalam Sutikno (1987: 3) dinyatakan bahwa geomorfologi adalah studi mengenai bentuklahan dan terutama tentang sifat alami, asal mula, proses perkembangan, dan komposisi material penyusunnya.

3) Thornbury dalam Sutikno (1990: 2) disebutkan bahwa geomorfologi adalah ilmu pengetahuan tentang bentuklahan.

4) Zuidam dan Concelado (1979: 3) juga menyatakan bahwa Geomorfologi adalah studi yang menguraikan bentuklahan dan proses yang mempengaruhi pembentukannya serta mengkaji hubungan timbal balik antara bentuk lahan dengan proses dalam tatanan keruangannya.

5) Verstappen (1983: 3) bentuklahan adalah menjadi sasaran Geomorfologi bukan hanya daratan tetapi juga yang terdapat di dasar laut (lautan).

Berdasarkan uraian yang telah dikemukakan di atas, maka dapat dijelaskan bahwa Geomorfologi adalah mempelajari bentuklahan (landform), proses-proses yang menyebabkan pembentukan dan perubahan yang dialami oleh setiap bentuk lahan yang dijumpai di permukaan bumi termasuk yang terdapat di dasar laut/samudera serta mencari hubungan antara bentuk lahan dengan proses-proses dalam tatanan keruangan dan kaitannya dengan lingkungan. Di samping itu, juga menelaah dan mengkaji bentuk lahan secara deskriptif, mempelajari cara pembentukannya, proses alamiah dan ulah manusia yang berlangsung, pengkelasan dari bentuk lahan serta cara pemanfaatannya secara tepat sesuai dengan kondisi lingkungannya.

Struktur geologi sangat erat hubungannya dengan bentuk lahan, salah satunya adalah patahan (fault) yang termasuk dalam kajian struktur geologi yang paling mudah di identifikasi karena terlihat secara jelas yaitu terjadinya retakan yang mengakibatkan pergeseran pada batuan yang dimana salah satu sisi bergerak relatif terhadap sisi lainnya

Proses geomorfologi yang terjadi seperti longsor, erosi, aktivitas vulkanisme dll yang menyebabkan bentuk lahan yang dilihat sekarang berbeda dengan bentuk lahan terdahulu seperti yang terjadi pada batuan gamping yang bersifat basa dengan kadar yang tinggi sehingga mudah membentuk lubang akibat dari air hujan yang netral berubah menjadi asam ketika bertemu dengan basa yang berkadar tinggi yang disebut dengan luweng

Erosi adalah peristiwa pengikisan tanah oleh angin, air, atau es. Erosi dapat terjadi karena sebab alami atau disebabkan oleh aktivitas manusia, penyebab alami erosi antara lain adalah karakteristik hujan, kemiringan lereng, tanaman penutup dan kemampuan tanah untuk menyerap dan melepas air ke dalam lapisan tanah dangkal. Erosi yang disebabkan oleh aktivitas manusia umumnya disebabkan oleh adanya penggundulan hutan, kegiatan pertambangan, perkebunan dan perladangan

Perubahan – perubahan iklim didunia akan menyebabkan perbedaan proses geomorfik yang berbeda dikarenakan iklim adalah hal yang sangat mempengaruhi setiap proses yang terjadi dialam ini seperti batu yang melapuk akibat cuaca yang berganti dari dingin kepanas dengan sangat drastis begitu juga dengan bumi yang tersusun bermacam-macam komposisinya

Contoh daerahnya adalah kota semarang yang merupakan salah satu kota pantai yang diindonesia. Dikawasan pantainya terdapat berbagai fasilitas publik yang bernilai sangat tinggi, seperti pelabuhan dan terminal bus antar kota. disamping itu juga terdapat tempat kawasan perumahan yang bernilai sejarah seperti kawasan kota lama, perumahan mewah, kawasan wisata pantai, permukiman kumuh, perikanan, sawah, dsb. Kita dapat melihat kondisi geomorfologi dan kondisi kawasan yang dijumpai pada kota semarang

Pada tahun 2001, diperkirakan permukaan air laut naik 1,00 m ( sea-level rise – SLR 1,00 m ) yang disebabkan oleh berbagai kerusakan lingkungan hidup, antara lain oleh pemanasan global. Dalam kaitan ini, telah dilakukan pengkajian wilayah pantai Kota Semarang menggunakan metoda deskriftif melalui identifikasi dan inventarisasi permasalahan kawasan dan geomorfologi yang ada saat ini untuk mendapatkan dampak atau resiko terhadap fisik lingkungan wilayah, geomorfologi perairan dan daratan, lingkungan, ekonomi sosial serta kemungkinan teknik adaptasi manusia pada genangan banjir, yang kelak akan digunakan untuk bahan penyusunan metoda perhitungan kerugian wilayah, adaptasi dan mitigasi bencana banjir

Berdasarkan dari bencana rob atau banjir, pemda dan masyarakat wilayah pantai Kota semarang sudah berusaha secara teknologi menghadapi/mengadaptasi bencana banjir melalui penerapan teknologi sistem drainase yang tepat, meninggikan lantai rumah, bangunan dan jalan raya hingga rata-rata diatas permukaan air tertinggi

GEOMORFOLOGI :

bentuk permukaan bumi

Geomorfologi adalah sebuah studi ilmiah terhadap permukaan Bumi dan poses yang terjadi terhadapnya. Secara luas, berhubungan dengan landform (bentuk lahan) tererosi dari batuan yang keras, namun bentuk konstruksinya dibentuk oleh runtuhan batuan, dan terkadang oleh perolaku organisme di tempat mereka hidup. “Surface” (permukaan) jangan diartikan secara sempit; harus termasuk juga bagian kulit bumi yang paling jauh. Kenampakan subsurface terutama di daerah batugamping sangat penting dimana sistem gua terbentuk dan merupakan bagian yang integral dari geomorfologi.

Pengaruh dari erosi oleh: air, angin, dan es, berkolaborasi dengan latitude, ketinggian dan posisi relatif terhadap air laiut. Dapat dikatakan bahwa tiap daerah dengan iklim tertentu juga memiliki karakteristik pemandangan sendiri sebagai hasil dari erosi yang bekerja yang berbeda terhadap struktur geologi yang ada.

Torehan air terhadap lapisan batugamping yang keras dapat berupa aliran sungai yang permanen dan periodik, dapat juga merupakan alur drainase yang melewati bagian-bagian yang lemah. Sehingga membentuk cekungan-cekungan pada bagian yag tererosi dan meninggalkan bagian yang lebih tinggi yang susah tererosi. Ukuran dari cekungan dan tinggian ini bisa beberapa centimeter sampai beberapa kilometer.

SUMBER

Explore posts in the same categories: Caving

Intinya adalah:

Jadi geomorfologi adalah ilmu yang mempelajari tentang permukaan bumi

Contoh dari salah satu daerah dan efek dr GEOMORFOLOGI adalah :

Hasil identifikasi bentuk dasar laut dari beberapa lintasan seismik, citra seabeam dan foto dasar laut maka dapat dikenali beberapa bentuk geomorfologi utama yang umum terdapat pada kawasan subduksi lempeng aktif. Empat bentuk morfologi utama dapat diidentifikasi, yaitu zona subduksi, palung laut, prisma akresi, dan cekungan busur muka. Gambaran bentuk geomorfologi dasar laut ini kemungkinan merupakan contoh morfologi dasar laut yang terbaik di dunia karena batas-batasnya yang jelas dan mudah dikenali.

Dan apabila lempengan – lempengan yang ada di dasar laut tersebut saling bertabrakan maka akan terjadigempa dan diikuti oleh tsunami, dan ciri-ciri tsunami adalah air laut akan menyurut ke tengah dan akan memuntahkannya air yang surut tadi kearah sisi pantai dan akan membanjiri daratan.

- Efeknya bagi manusia adalah :

akan terjadi bencana gempa bumi yang sangat dahsyat

- Terjadi didaerah daerah Padang Pariaman dan sekitarnya.

A.  Pengertian Geomorfologi

Geomorfologi adalah ilmu yang mempelajari tentang bentuk permukaan bumi dan perubahan-perubahan yang terjadi pada bumi itu sendiri. Geomorfologi biasanya diterjemahkan sebagai ilmu bentang alam. Mula-mula orang memakai kata fisiografi untuk ilmu yang mempelajari tetang ilmu bumi ini, hal ini dibuktikan pada orang-orang di Eropa menyebut fisiografi sebagai ilmu yang mempelajari rangkuman tentang iklim, meteorologi, oceanografi, dan geografi. Akan tetapi orang, terutama di Amerika, tidak begitu sependapat untuk memakai kata ini dalam bidang ilmu yang hanya mempelajari ilmu bumi saja dan lebih erat hubungannya dengan geologi. Mereka lebih cenderung untuk memakai kata geomorfologi.

B.     Konsep dasar Geomorfologi

10 Konsep dasar geomorfologi yang berada dalam buku Principles of Geomorphology adalah:

  1. Proses-proses fisik dan hukumnya yang terjadi saat ini berlangsung selama waktu geologi,
  2. Struktur geologi merupakan faktor pengontrol yang dominan dalam evolusi bentuk lahan,
  3. Tingkat perkembangan relief permukaan bumi tergantung pada proses-proses geomorfologi yang berlangsung,
  4. Proses-proses geomorfik terekam pada land forms yang menunjukan karakteristik proses yang berlangsung,
  5. Keragaman erosional agents tercermin pada produk dan urutan land forms yang terbentuk,
  6. Evolusi geomorfologi bersifat kompleks,
  7. Obyek alam di permukaan bumi umumnya berumur lebih muda dari Pleistosen,
  8. Interpretasi yang sempurna mengenai landscapes melibatkan beragam faktor geologi dan perubahan iklim selama Pleistosen,
  9. Apresiasi iklim global diperlukan dalam memahami proses-proses geomorfik yang beragam, dan
  10. Geomorfologi, umumnya mempelajari land forms / landscapes yang terjadi saat ini dan sejarah pembentukannya.

C.     Proses Geomorfologi.

Proses geomorfologi adalah perubahan-perubahan baik secara fisik maupun kimiawi yang dialami permukaan bumi. Penyebab proses tersebut yaitu benda-benda alam yang kita kenal dengan nama geomorphic agent, berupa air dan angin. Keduanya merupakan ad penyebab yang dibantu dengan adanya gaya berat, dan keseluruhannya bekerja bersama-sama dalam melakukan perubahan terhadap permukaan muka bumi. Tenaga-tenaga perusak ini dapat kita golongkan dalam tenaga asal luar (eksogen), yaitu yang datang dari luar atau dari permukaan bumi, sebagai lawan dari tenaga asal dalam (endogen) yang berasal dari dalam bumi. Tenaga asal luar pada umumnya bekerja sebagai perusak, sedangkan tenaga asal dalam sebagai pembentuk. Kedua tenaga inipun bekerja bersama-sama dalam mengubah bentuk permukaan muka bumi ini.

Pembentukan Perusakan Pengangkutan
Tenaga asala dalam

Pembentukan struktur

Pembentukan gunung api

Tenaga asal luar

Gradasi

Pelapukan

Tenaga dari luar bumi

Adanya jatuhan dari meteor

Tenaga asal luar

Pengangkutan bahan

Erosi

Gelombang

Gambar 1.0 Bagan Terjadinya geomorfologi.

D.      Ada beberapa terapan geomorfologi menurut Thornbury dalam Sutikno yaitu:

  1. Terapan geomorfologi dalam hidrologi, yang membahas hidrologi di daerah karst dan air tanah daerah glasial. Masalah hidrologi di daerah karst dapat diketahui dengan baik apabila geomorfologinya diketahui secara mendalam. Air tanah di daerah glasial tergatung pada tipe endapannya, dan tipe endapan ini dapat lebih mudah didekati dengan geomorfologi.
  2. Terapan geomorfologi dalam geologi ekonomi, yaitu membahas pendekatan geomorfologi untuk menentukan tubuh bijih, jebakan residu, mineral epigenetik, dan endapan bijih.
  3. Terapan geomorfologi dalam keteknikan, aspek keteknikan yang dibahas meliputi jalan raya, penentuan pasir, dan kerakal, pemilihan situs bendungan dan geologi militer. Terapan geomorfologi dalam keteknikan ini semua aspek geomorfologi dipertimbangkan
  4. Terapan geomorfologi dalam ekplorasi minyak, banyak unsur-unsur minyak di AS yang ditentukan dengan pendekatan geomorfologi terutama bentuklahan termasuk topografi, untuk mengenal struktur geologi dalam penentuan terdapatnya kandungan minyak.
  5. Terapan geomorfologi dalam bidang lain, yaitu menyangkut pemetaan tanah, kajian pantai, dan erosi.

E.      Ringkasan

Geomorfologi bukan hanya sekedar mempelajari bentuk lahan yang tampak saja, tetapi juga mentafsirkan bagaimana bentuk-bentuk tersebut bisa terjadi, proses apa yang mengakibatkan pembentukan dan perubahan muka bumi. Jadi meliputi bentuklahan (landform), proses-proses yang menyebabkan pembentukan dan perubahan yang dialami oleh setiap bentuklahan yang dijumpai di permukaan bumi termasuk yang terdapat di dasar laut/samudera serta mencari hubungan antara bentuk lahan dengan proses-proses dalam tatanan keruangan dan kaitannya dengan lingkungan. Dengan demikian bahwa dalam mempelajari geomorfologi terkait pada geologi, fisiografi, dan proses geomorfologi yang menjadi faktor yang tidak dapat diabaikan dalam perubahan bentuk lahan. Konsep dasar Geomorfologi perlu dipahami secara baik untuk mempelajari Geomorfologi dalam membantu mengenal dan menganalisa kenampakan bentuk lahan di permukaan bumi, sehingga pada akhirnya dapat mengenal peristilahan baik secara deskriptif maupun secara empiris, terutama nanti dalam melakukan klasifikasi bentuk lahan. Geomorfologi mempunyai peran dan terapan dalam survei dan pemetaan, survei geologi, hidrologi, vegetasi, penggunaan lahan pedesaan, keteknikan, ekplorasi mineral, pengembangan dan perencanaan, analisis medan, banjir, serta bahaya alam disebabkan oleh gaya endogen.

Contoh daerah yang mengalami perubahan bentuk permukaan muka bumi:

Palung laut merupakan bentuk paritan memanjang dengan kedalaman mencapai lebih dari 6.500 meter. Umumnya palung laut ini merupakan batas antara kerak samudera India dengan tepian benua Eurasia sebagai bentuk penunjaman yang menghasilkan celah memanjang tegak lurus terhadap arah penunjaman (Gambar 4).

Satuan geomorfologi palung samudra di sebelah selatan Jawa (PPPGL, 2008).

Satuan geomorfologi palung samudra di sebelah selatan Jawa (PPPGL, 2008).

Beberapa patahan yang muncul di sekitar palung laut ini dapat reaktif kembali seperti yang diperlihatkan oleh hasil plot pusat-pusat gempa atau episentrum di sepanjang lepas pantai pulau Sumatera dan Jawa. Sesar mendatar Mentawai yang ditemukan pada Ekspedisi Mentawai Indonesia-Prancis tahun 1990-an terindikasi sebagai sesar mendatar yang berpasangan namun di berarapa bagian memperihatkan bentuk sesar naik. Hal ini merupakan salah satu sebab makin meningkatnya tekanan kompresif dan seismisitas yang menimbulkan kegempaan.

Di bagian barat pulau Sumatera, pergerakan lempeng samudera India mengalibatkan terangkatnya sedimen (seabed) di kerak samudera dan prisma-prisma akresi yang merupakan bagian terluar dari kontinen. Sesar-sesar normal yang terbentuk di daerah bagian dalam yang memisahkan prisma akresi dengan busur  kepulauan mengakibatkan peningkatan pasokan sedimen yang lebih besar. Demikian pula akibat terjadinya pengangkatan tersebut maka morfologi palung laut di kawasan ini memperlihatkan bentuk lereng yang terjal dan sempit dibandingkan dengan palung yang terbentuk di kawasan timur Indonesia.

Daerah lain terjadinya geomorfologi yaitu daerah semarang yang merupakan salah satu kota pantai yang di indonesia. Dikawasan pantainya terdapat berbagai fasilitas publik yang bernilai sangat tinggi, seperti pelabuhan dan terminal bus antar kota. disamping itu juga terdapat tempat kawasan perumahan yang bernilai sejarah seperti kawasan kota lama, perumahan mewah, kawasan wisata pantai, permukiman kumuh, perikanan, sawah, dsb. Kita dapat melihat kondisi geomorfologi dan kondisi kawasan yang dijumpai pada kota semarang

Tanah Longsor yang terjadi di Semarang.

Tanah Longsor yang terjadi di Semarang.

Pada tahun 2001, diperkirakan permukaan air laut naik 1,00 m yang disebabkan oleh berbagai kerusakan lingkungan hidup, antara lain oleh pemanasan global. Dalam kaitan ini, telah dilakukan pengkajian wilayah pantai Kota Semarang menggunakan metoda deskriftif melalui identifikasi dan inventarisasi permasalahan kawasan dan geomorfologi yang ada saat ini untuk mendapatkan dampak atau resiko terhadap fisik lingkungan wilayah, geomorfologi perairan dan daratan, lingkungan, ekonomi sosial serta kemungkinan teknik adaptasi manusia pada genangan banjir, yang kelak akan digunakan untuk bahan penyusunan metoda perhitungan kerugian wilayah, adaptasi dan mitigasi bencana banjir

Berdasarkan dari bencana rob atau banjir, pemda dan masyarakat wilayah pantai Kota semarang sudah berusaha secara teknologi menghadapi/mengadaptasi bencana banjir melalui penerapan teknologi sistem drainase yang tepat.

Sumber:

Blog geje. Geomorfologi Umum.

 

Presented by NUR KHAIRULLAH

270110090056

GEOMORFOLOGI

Leave a comment

Geomorfologi adalah sebuah studi ilmiah terhadap permukaan Bumi dan poses yang terjadi terhadapnya. Secara luas, berhubungan dengan landform (bentuk lahan) tererosi dari batuan yang keras, namun bentuk konstruksinya dibentuk oleh runtuhan batuan, dan terkadang oleh perolaku organisme di tempat mereka hidup. “Surface” (permukaan) jangan diartikan secara sempit; harus termasuk juga bagian kulit bumi yang paling jauh.

Kenampakan subsurface terutama di daerah batugamping sangat penting dimana sistem gua terbentuk dan merupakan bagian yang integral dari geomorfologi. Pengaruh dari erosi oleh: air, angin, dan es, berkolaborasi dengan latitude, ketinggian dan posisi relatif terhadap air laiut. Dapat dikatakan bahwa tiap daerah dengan iklim tertentu juga memiliki karakteristik pemandangan sendiri sebagai hasil dari erosi yang bekerja yang berbeda terhadap struktur geologi yang ada.

Torehan air terhadap lapisan batugamping yang keras dapat berupa aliran sungai yang permanen dan periodik, dapat juga merupakan alur drainase yang melewati bagian-bagian yang lemah. Sehingga membentuk cekungan-cekungan pada bagian yag tererosi dan meninggalkan bagian yang lebih tinggi yang susah tererosi. Ukuran dari cekungan dan tinggian ini bisa beberapa centimeter sampai beberapa kilometer.

Morfologi Makro

Dibawah ini adalah beberapa bentuk morfologi permukaan karst dalam ukuran meter sampai kilometer:
• Swallow hole

Lokasi dimana aliran permukaan seluruhnya atau sebagian mulai menjadi aliran bawah permukaan yang terdapat pada batugamping. Swallow hole yang terdapat pada polje sering disebut ponor. (Marjorie M. Sweeting, 1972). Pengertian ini dipergunakan untuk menandai tempat dimana aliran air menghilang menuju bawah tanah.
• Sink hole

Disebut juga doline, yaitu bentukan negatif yang dengan bentuk depresi atau mangkuk dengan diameter kecil sampai 1000 m lebih. (William B. White, 1988)
• Vertical shaft

Pada bentuk ideal, merupakan silinder dengan dinding vertikal merombak perlapisan melawan inclinasi perlapisan. (William B. White, 1988)
• Collapse (Runtuhan)

 

 
• Cockpit

Bentuk lembah yang ada di dalam cone karst daerah tropik yang lembab. Kontur cockpit tidak melingkar seperti pada doline tetapi seperti bentuk bintang dengan sisi-sisi yang identik, yang menunjukkan bahwa formasi cone merupakan faktor penentunya. (Alfred Bogli, 1976)
• Polje

Depresi aksentip daerah karst, tertutup semua sisi, sebagian terdiri dari lantai yang rata, dengan batas-batas terjal di beberapa bagian dan dengan sudut yang nyata antara dasar/ lantai dengan tepi yang landai atau terjal itu.(Fink, Union Internationale de Speleologie)
• Uvala

Cekungan karst yang luas, dasarnya lebar tidak rata (Cjivic, 1901) : lembah yang memanjang kadang-kadang berkelak-kelok, tetapi pada umumnya dengan dasar yang menyerupai cawan. (Lehman, 1970)
• Dry valley

Terlihat seperti halnya lembah yang lainnya namun tidak ada aliran kecuali kadang-kadang setelah adanya es yang hebat diikuti oleh pencairan es yang cepat. (G.T. Warwick, 1976).

 

Pulau Jawa memiliki kawasan karst yang cukup spesifik yaitu karst Gunung Sewu, dimana bentukan bukit-bukit seperti cawan terbalik (cone hill) dan kerucut (conical hill) begitu sempurna dengan lembah-lembahnya. Bukit merupakan residu erosi dan lembahnya adalah merupakan daerah diaman terjadi erosi aktif dari dulu sampai sekarang. Bagian-bagian depresi atau cekungan merupakan titik terendah dan menghilangnya air permukaan ke bawah permukaan. Erosi memperlebar struktur (lihat geologi gua dan teori terbentuknya gua), kekar, sesar, dan bidang lapisan, dan membentuk gua-gua, baik vertikal maupun horisontal.

 

Gua-gua juga dapat terbentuk karena adanya mata air karst. Mata air (spring) karst ini ada beberapa jenis:
• Bedding spring

mata air yang terbentuk pada tempat dimana terjadi pelebaran bidang lapisan.
• Fracture spring

mata air yang terbentuk pada tempat dimana terjadi pelebaran bidang rekahan.
• Contact spring

mata air yang terbentuk karena adanya kontak antara batu gamping dan batu lain yang impermiabel.
• Vrulja

jenis mata air yang berada di bawah permukaan air laut disebut dengan

Morfologi Mikro

Ada kawasan karst dengan sudut dip yang kecil dan permukaannya licin. Area ini dipisah-pisahkan dalam bentuk blok-blok oleh joint terbuka, disebut dengan grike-Bhs. Inggris, atau Kluftkarren-Bhs. Jerman. Bentukan-bentukan minor ini dalam bahasa Jerman memiliki akhiran karren (lapies-Bhs Perancis). Sering permukaan blok itu terpotong menjadi sebuah pola dendritic dari runnel dengan deretan dasar (round) dipisahkan oleh deretan punggungan (ridge) yang mengeringkannya kedalam grike terlebih dahulu. Juga terkadang mereka memiliki profil panjang yang hampir mulus. Bentukan ini disebut Rundkarren.

Tipe lain adalah Rillenkarren yang memiliki saluran yang tajam, ujung punggungan dibatasi oleh deretan saluran berbentuk V. Biasanya nampak pada permukaan yag lebih curam daripada rundkarren, dengan saluran sub-paralel dan beberapa cabang.

Microrillenkarren merupakan bentuk gabungan tetapi hanya memiliki panjang beberapa centimeter dan lebarnya 10-20 mm. Pseudo karren, memiliki bentuk sama dengan rundkarren dan rinnenkarren. Tetapi hanya terjadi pada granit di daerah tropik yang lembab.

GUA
Torehan air dan es adalah faktor utama yang memperlebar zonal lemah dilapisan batu gamping, sehingga terbentuk gua-gua. Ada banyak teori yang menjelaskan asal muasal terjadinya gua (teori klasik), namun sekarang sudah ada teori yang menjelaskan dan diterima secara umum. Perbedaan teori tersebut dikeluarkan oleh orang yang berasal dari kawasan karst yang berbeda, sesuai dengan karakteristik daerah tersebut. Lihat teori terbaru mengenai proses terlahirnya gua. Lihat juga speleogenesis.

GEOLOGI GUA

Batuan sedimen batu gamping disusun dari sisa-sisa tumbuhan dan binatang yang menghasilkan kalsium karbonat sebagai bagian dari metabolismenya membentuk bagian utama dari batugamping. Komponen lainnya adalah dari pengendapan secara kimiawi atau oleh proses biokimia. Secara bersama-sama tersedimentasi pada dasar laut; dan hal ini tidak memilki karakter yang seragam diseluruh bagiannya, jadi batugamping bukan merupakan komposisi yang seragam. Jenis dari batugamping ini sangat tidak terbatas. Sederetan sejarah dari jenis sedimentasi adalah litifikasi, formasi batuan dari bentuk yang khusus. Hal ini melibatkan perubahan kimia yang komplek seperti halnya adalah sementasi dan rekristalisasi, silikafikasi dan dolomitasi: secara bersama-sama biasa disebut dengan istilah diagenesis. Gua-gua hanya dapat dibentuk dari batuan yang ter-litifikasi, dan jelas bahwa karakter sedimen semula dan sejarah diagenetik adalah faktor-faktor yang mengontrol lokasi sebuah gua.

Proses kelahiran sebuah gua biasa disebut dengan speleogenesis, dan fitur dari geologi sangat besar pengaruhnya disini. Ada beberapa sistem pengklasifikasian batugamping (limestone). Sebagian tergantung kepada komponen perbedaan lingkungan formasi, perbedaan material komponen, perbedaan ukuran butir, perbedaan matrix, dan perbedaan perubahan diagenesisnya. Berbagai sistem klasifikasi tersebut memungkinkan untuk adanya derajat gradasi antar klasifikasi dan ada beberapa kelengkapan tambahan.

Adapun mineral dari batugamping adalah:

  • Calcite CaCO3 Struktur materialnya sebagian besar dari invertebrata laut dan merupakan komponen utama dari limestone. Mengkristal dalmsistem trigonal.
  • Aragonite CaCO3.
  • Dolomite CaMg(CO3)2 .
  • Chaldedony SiO2 .

 

PEMANFAATAN SUNGAI BAWAH TANAH DI KAWASAN KARST

Apabila kita melakukan penelusuran dalam gua, kita tidak asing lagi dengn bentukan khas dan mempunyai daya tarik tersendiri karena bentuknya yang bermacam-macam dan unik. Biasanya adanya rekahan-rekahan yang terbuka menyebabkan air mudah meresap ke dalam lapisan batugamping, kemudian muncul pada langit-langit, dinding, serta lantai gua membentuk ornamen gua (speleothem) yang paling terkenal adalah stalactite dan stalagmite.

Kondisi geologi di kawasan karst ini merupakan salah satu penentu bentukan speleothem. Tidak hanya itu, situasi geologi juga menentukan bentuk dari lorong-lorong gua. Dikenal dengan struktur sebagai pengontrol. Dalam hal ini adalah bidang perlapisan (bedding plane) serta rekahan akibat kekar (joint) dan sesar (fault).

PERMASALAHAN AIR DI KAWASAN KARST

Dengan memperhatikan fenomena di atas, bisa diketahui bahwa di setiap musim kemarau tidak tersedia air permukaan dalam jumlah cukup. Sehingga bencana kekeringan menjadi ancaman di setiap tahun. Padahal jauh di bawah permukaan, air mengalir dengan percuma kemudian muncul di tempat lain yang jauh.Untuk selanjutnya pembicaraan dititikberatkan pada pemanfaatan sungai bawah tanah untuk penanggulangan masalah kekeringan tersebut.

Salah satu kawasan karst yang memiliki kondisi ekstrim seperti tersebut di atas adalah satu kawasan di Kabupaten Gunungkidul yang terkenal dengan nama Kawasan Karst Gunung Sewu. Tercatat di tahun 1987, bencana kekeringan diderita oleh sekitar 193.900 jiwa di 7 kecamatan wilayah Kabupaten tersebut. Untuk memenuhi kebutuhan akan air, penduduk kawasan ini rela melakukan apa saja. Mereka mengkonsumsi air dari telaga-telaga yang, ada sekalipun di telaga tersebut juga berlangsung aktifitas mandi, cuci, dan memandikan ternak. Juga sumber-sumber air lainnya seperti gua-gua yang terdapat aliran sungai bawah tanah.

BENTUK LAIN PEMANFAATAN SUNGAI BAWAH TANAH

  • Di salah satu pedukuhan kecil kawasan karst Gombong Selatan, sungai bawah tanah digunakan sebagai sumber pembangkit listrik dengan distribusi pembagian jumlah daya yamg mereka kelola sendiri. Meskipun di Kota Kecamatannya sendiri dan daerah sekitarnya belum teraliri jaringan instalasi listrik dari PLN.
  • Untuk Industri, sungai bawah tanah Gua Londron di kawasan Maros Sulawesi Selatan yang sebagian besar dimanfaatkan pabrik semen Tonasa.
  • Sebagai laboratorium alam, sungai bawah tanah (baca : gua) memiliki biota, sistim hidrologi dan unsur lain yang spesifik. Berbagai ilmu yang menyangkut biota, gua beserta lingkungannya, genesa gua dan lain sebagainya terdapat satu unifikasi ilmu pengetahuan yang masih terus digali dan dikembangkan yaitu speleologi.
  • Untuk wisata umum, contohnya di Kalimantan Selatan ada dua buah gua yang dapat dilayari yang mulai dikembangkan untuk wisata.
  • Wisata minat khusus, untuk penggemar kegiatan alam bebas (caving, cave diving, black water rafting). Berbagai macam kondisi yang multikomplek cukup menantang untuk penggemar kegiatan alam bebas. Saat ini perkembangan kegiatan caving dan kegiatan alam lain yang berhubungan banyak dilakukan oleh para penggemar olahraga alam bebas di Indonesia maupun di luar negeri.

 

SPELEOTHEM

Kesepakatan dalam klasifikasi speleothem memiliki dua hirarki; form (bentuk) dan style (corak). Form adalah speleothem dengan bentuk dasar yang dapat membedakan berdasar pada perilaku pertumbuhan mineral atau mekanisme dasar deposisinya. Style adalah klasifikasi lanjutan dari form yang menjelaskan bentuk berbeda yang merupakan hasil dari perbedaan tingak aliran, tingkat deposisi, dan faktor lainnya.
Daftar form speleothem menurut kesepakatan adalah:

A. Form dripstone dan flowstone

1. Stalactite

2. Stalagmite

3. Draperies

4. Flowstone sheet

B. Form Erratic

1. Shield
. Helictites
3. Form Botryoida
4. Anthodite
5. Moonmilk

 

C. Form sub-aqueous

1. Kolam rimstone

2. Concretion dari berbagai macam

3. Deposit kolam

4. Deretan kristal
Klasifikasi diatas dibatasi pada kelompok mineral tertentu, terutama karbonat.

Speleothem Dripstone dan Flowstone

Stalactite

Air muncul di atap gua menggantung sebentar sebelum jatuh ke lantai gua. Selama menggantung tersebut, CO2 menghilang ke atmosfir gua, larutannya menjadi sangat jenuh air, dan bahan mineralnya yang sangat sedikit jumlahnya akan tertinggal melingkar dengan ukuran sama dengan tetesannya. Lingkaran tersebut akan tumbuh ke bawah dengan diameter konstan dan materalnya bertambah terus sampai sebuah tube yang ramping terbentuk. Tube ini agak porous sehingga air dapat merembes melalui antar butirannya dan sepanjang retakan untuk mengendapkan material di bagian luar. Porositas ini disebabkan oleh karena bahan yang diendapkan tersebut menggantung dan terkena gaya gravitasi, sehingga antar butir tidak terikat dengan kuat.

Hasilnya dari mekanisme diatas adalah stalactite, yang memiliki lubang di dalamnya atau paling tidak meninggalkan bekas lubang di tengah kanalnya. Untuk stalactite yang lebih besar, tambahan bahan adalah datang dari tambahan air rembesan dari luar turun melalui luar, lebih banyak daripada dari tengah kanal. Saluran pada stalactite terkadang cukup besar untuk dimasuki butiran pasir atau material klasitik lainnya, dan dapat tergabung kedalam speleothem tersebut. Banyaknya corak stalactite disebabkan oleh terhambatnya saluran, dan karena variasi panjang musim. Panjangnya stalactite tersebut tergantung kepada berat yang dapat didukung, dan stalactite rusak dan jatuh kebawah akibat bebannya sendiri adalah hal yang lumrah.

Stalagmite

Tetesan yang jatuh kebawah ke lantai gua terus mengendapkan material, dan membangun suatu gundukan yang disebut stalagmite. Kemudian dia tumbuh sebagai bentuk silinder yang semakin tinggi. Radius pertumbuhannya dibatasi oleh tingkat tetesan karena sangat menurunnya tingkat jenuh air atau penguapan sempurna lapisan tipis embun yang tersebar di sekitar titik jatuhnya. Diameter yang seragam menujukkan bahwa adanya kondisi yang konstan selama perode waktu yang panjang.

Proses pertumbuhan dripstone dapat di-angka-kan untuk menghasilkan hubungan matematis antara parameter ukuran dan bentuk serta karakter larutan. Analisis dari Curls (1973) terhadap straw stalactite, menunjukkan bahwa diameter straw berhubungan dengan gaya gravitasi terhadap butir tetesan dan tekanan bidang permukaan dari cairan dengan menggunakan bilangan Bund tanpa dimensi.

Stalagmite memiliki struktur internal yang terdiri dari cuspate layer atau caps (balutan). Stalagmite berusaha mempertahankan keseragaman penampang melintang dapat dijelaskan dengan keseimbangan diameter, d, yang mengukur lebar ke samping dari larutan sebelum deposisi selesai. Franke (1961, 1963, 1965) membuat penggunaan keseimbangan diameter untuk mengevaluasi tingkat pertumbuhan dan kondisi berikutnya dari penambahan larutan. Corak teras (petak) secara tidak langsung menyatakan variasi periode pada tingkat pertumbuhan, dan corak kerucut menunjukkan tingkat pertumbuhan yang rendah.

TEORI TERBARU MENGENAI PERKEMBANGAN PERGUAAN

Di tahun-tahun terakhir ada sebuah peralihan yang penting, dari penggunaan teori fisiografi dan pertimbangan kualitatip teori “klasik” menuju ke pendekatan proses yang lebih kuantitatip. Berbagai studi terakhir telah meneliti keadaan geologi, hidrologi, serta pelapukan kimiawi dan mekanis oleh pelapukan oleh iklim dan proses erosi yang berhubungan terhadap perguaan dan perkembangan karst. Bacaan yang merujuk ke hal-hal yang komprehensif misalnya yang dilakukan oleh Jennings (1985), Sweeting (1973), Ford dan Cullingford (1976), White (1988), Ford dan William (1989).

Menurut Ford (1981), sekarang dikenal bahwa tidak ada satupun kasus umum dari perkembangan gua batu gamping yang secara tepat dapat ditetapkan seperti teori lama. Lebih dari itu, ada tiga kasus yang umum, gua vadose predominan, gua deep phreatic dan gua water table.

Satu atau beberapa tipe perkembangan gua yang umum bahwa terjadi dipengaruhi oleh frekuensi penetrasi air tanah di rekahan yang signifikan, dan oleh perbandingan kekar ke bidang perlapisan. Secara bersama-sama, karakteristik ini berkombinasi membentuk konsep konduktifitas hidrolik. Konduktifitas hidrolik adalah sebuah koefisien perbandingan yang menjelaskan tingkatan dimana air dapat bergerak melalui media permiabel (Fetter, 1980). Makin tinggi konduktifitas hidrolik, makin besar kemungkinan sebuah gua water table akan berkembang. Gua water table sangat lazim adalah pada lapisan batuan yang datar, dimana penempatan air tanah terjadi karena adanya layer batu yang lebih resist. Penetrasi dalam dari air terhalang oleh adanya pembukaan dangkal bidang perlapisan yang mana terus menerus menjadi menjadi mata air.

Gua tipe vadose berkembang pada aliran air yang cukup terkumpul diatas titik sink dan mengangkut air menuju water table atau mata air. Gua deep phreatic mencapai perkembangan optimal pada batuan dengan kemiringan yang tajam karena terus menerus mengikuti bidang perlapisan ke tempat yang lebih dalam.

Palmer (1984) mencatat bahwa lorong yang lebih besar dari banyak gua memperlihatkan sebuah urutan level dari yang termuda, bagian yang masih aktif, berada di elevasi terbawah. Pada level yang mana terjadi pelebaran terkonsentrasi pada atau didekat bagian yang sejaman dengan level sungai. Penelitian di Kentucky oleh Miotke dan Palmer (1972), menunjukkan bahwa pola perguaan merupakan refleksi dari sejumlah perubahan pada base level dan iklim sejak Periode Tersier Akhir.

Dimana gua-gua terbentuk tergantung pada geologi setempat, dan hidrologi, dan mungkin untuk satu gua memiliki lorong terbentuk diatas atau dibawah water table. Dia lebih lanjut menekankan bahwa hubungan yang lebih jelas dalam beberapa area antar level gua dan sejarah fluvial, menampilkan kecenderungan pelarutan untuk sampai ke water table.

Fakta-fakta lokasi yang tersebut disini berasal dari berbagai peneliti karst sehingga makin menjelaskan evolusi gagasan mengenai speleogenesis gua. Debat diantara peneliti terdahulu, apakah gua bermula di bawah atau di atas water table telah secara mendasar dapat diselesaikan. Sekarang dapat diterima bahwa tiga asal muasal tersebut dapat terjadi mungkin tergantung kepada kondisi hidrologi dan geologi setempat.

 

GEOMORFOLOGI DAERAH KARST

Intrepretasi Peta Topografi Karst

Bentuk fenomena karst yang nampak di permukaan bumi :
1.            Tanah regolith

Merupakan residu pelarutan yang mengandung FeO2 pada lantai gua ataupun dasar doline
2.            Lapies

Menampakkan batuan kapur dalam bermacam relief kasar dengan selingan kesan bekas terjadinya pelarutan

3.            Alur air permukaan (surface drainage)
4.            Ponor

Tempat berakhirnya alir air pada alur permukaan
5.            Sinkhole

Bentuk cekungan yang terjadi oleh proses pelarutan batu kapur atau sejenisnya yang terletak di bawah permukaan

6.            Doline

Depresi yang terjadi oleh proses larutan dan runtuhan sinkhole, berbentuk bulat oval. Kedalamannya 2 m sampai 100 m. Diameternya 10 sampai 1000 m.

7.            Uvala
Merupakan lahan cekungan memanjang berbentuk oval akibat proses berkembangnya bentuk dan ukuran doline. Baik proses pelarutan maupun runtuhnya dinding doline. Kedalamannya 100 sampai dengan 200 m.

 

8.            Polje
Cekungan di daerah kapur yang mempunyai drainage di bawah permukaan. Terjadi dari perluasan uvala karena proses solusi dan collapse

 

9.            Hum
Penampakan residual dari uvala yang meluas akibat proses collapse dinding akibat korosi, pelapukan, dan beban air hujan.

 

10.          Vaucluse
Gejala karst yang berbentuk lubang tempat keluarnya aliran air tanah

11.          Karst window, natural bridge
Hasil pelarutan dan erosi batuan oleh air yang mengalir

 

12.          Gapura/ pintu gua
Terjadi dari tingkat kemajuan peristiwa fisis (erosi dan collapse)

 

Identifikasi pencirian adanya mulut gua dari interpretasi peta topografi, foto udara:

  • Pola aliran yang terputus, baik aliran periodik maupun aliran semua musim. Bentuk : Swallow hole (hilangnya aliran sungai / air), resurgence (tempat munculnya kembali aliran air ke permukaan, bisa sungai, bisa spring (sumber air /mataair). Ciri morfologi permukaan: dari peta topografi atau foto udara terlihat aliran sungai yang terputus. Untuk swallow hole, aliran air masuk menghilang kebawah permukaan tanah melewati mulut gua. Untuk resurgence dan spring, aliran air muncul dari bawah tanah melewati mulut gua.
  • scarp, escarpment. Bentuk : resurgence, spring, fosile, Ciri morfologi permukaan : adanya tebing akibat sesar.
  • pothole, shaft, dome pit. Dapat diidentifikasi di lapangan dan foto udara. Bentuk : lobang sumuran, celah vertikal. Ciri morfologi permukaan : tidak tentu.
  • closed depression (uvala, cockpit, doline/ sinkhole). Bentuk: lembah-lembah karst yang tertutup dan  vegetasi lebih lebat atau dengan jenis tumbuhan yang berbeda dengan vegetasi endemis disekitarnya serta adannya kelelawar, burung sriti, burung walet yang menuju atau dari satu titik daerah tertentu.

 

Adanya lapisan impermiabel Pendapat ahli tentang hidrologi karst :

  • Grund
    Air tanah pada daerah gamping mempunyai permukaan yang teratur, yang berarti didalam lapisan batu gamping terdapat adanya pipa yang berhubungan. Hal ini dibuktikan dengan pemberian warna atau zat-zat kimia lainnya (water tracing).
  • Katzer
    Air tanah pada daerah kapur ini tidak teratur, yang berarti pipa yang satu dan yang kain tidak ada hubungan. Bahwa terdapat pipa kapur yang pada level tinggi itu berair, terdapat pula daerah yang rendah itu kering.
  • Lehman
    Sependapat dengan Grund, lebih ditegaskan bahwa pipa kapur yang diameternya besar mempunya tekanan hidrostatis kapiler yang lebih besar dari pada pipa kapur yang diameternya kecil. Ketiga ahli tersebut sependapat bahwa sungai-sungai bawah tanah itu kita dapatkan pada lapisan batu gamping yang tidak begitu tebal atau tipis/ dangkal.

 

Kenampakan yang berhubungan dengan daerah Karst :

  1. Terra rosa
    Sisa-sisa material berwarna merah ( soil bersifat lempungan).
  2. Lapies
    Batu gamping yang mempunyai relief tinggi dan berbentuk Masiv.

 

HIDROLOGI AKIFER KARBONAT
Klasifikasi dari Akifer Karbonat
(Bagian Ini Diperoleh dari Reeder, 1988)

 

White (1969, 1977) telah mengelompokkan akifer karbonat berdasarkan sistem air tanah dan setting hidrologi. Air tanah bergerak dalam akifer karbonat dengan aliran difusi, aliran yang lambat atau aliran bebas. Aliran difusi terjadi dalam batuan yang tingkat kelarutannya rendah seperti batu gamping menyerpih atau dolomit kristalin. Pada aliran difusi akifer karbonat, jarang ada saluran yang terintegrasi, guanya kecil tidak beraturan yang mana sering kali hanya modifikasi kekar secara pelarutan. (White, 1969)(Figure 3)

Akifer aliran lambat dicirikan dengan aliran lambat oleh lingkungan artesis atau dalam lapisan yang tipis diantara batuan yang kedap (Gunn, 1985). Aliran lambat akifer karbonat memiliki jaringan pola gua karena rendahnya pengisian yang terpusat, yang mana dihalangi oleh lembaran batuan dasar yang permeabilitasnya rendah. Oleh karena itu, pelarutan berada sepanjang kekar yang ada dan membangkitkan sebuah jaring perguaan yang padat (White, 1969)(Figure 4).

Akifer karbonat yang mengalir lambat memiliki perkembangan sistem drainase bawah permukaan yang baik serupa polanya dengan sistem drainase permukaan. Input ke bawah permukaan dapat dari menghilangnya air permukaan, seperti aliran dari sinkhole dan infiltrasi pada umunya. Dalam tipe akifer ini, tapak aliran air tanah diperlebar oleh pelarutan menjadi sebuah sistem saluran yang terintegrasi dengan baik. (Gambar 5).

Kecepatan aliran dalam akifer karbonat aliran bebas dapat mencapai puluhan feet/detik dan seringkali dalam bentuk turbulen (White, 1969). Aliran turbulen terjadi melalui suatu ruangan kosong yang ukurannya berkisar dari 0.01 inchi karena pelebaran rekahan dan bidang perlapisan secara pelarutan, menjadi saluran phreatik besar dengan ukuran lebih dari 30 feet. Ruang ini berada dalam massa batugamping yang mana memiliki premeabilitas primer sangat rendah (Gunn, 1985). Permeabilitas sekunder berkembang dengan baik dalam aliran bebas akifer karbonat menjadi proses pelarutan yang membentuk ruang hampa ini.

HYDROLOGY OF CARBONATE AQUIFERS
Flow and Storage in Carbonate Aquifers
( HIDROLOGI DARI AKIFER KARBONAT )

 

Aliran dan Penyimpanan dalam Akifer Karbonat Di suatu akifer karbonat, aliran berada pada saluran (conduit) dan difusi end members, dengan aliran difusi terjadi pada rekahan yang rapat, kekar, dan bidang perlapisan, dimana kecepatannya sangat lambat dan alirannya sesuai dengan Hukum Darcy (Atkinson dan Smart, 1981). Hukum Darcy terdiri dari rumus aliran fluida berdasar pada asumsi bahwa aliran adalah laminer (tidak terjadi percampuran), dan inersianya dapat terabaikan (Bates dan Jackson, 1987). Pengisian kembali terhadap aliran dan penyimpanan air yang sesungguhnya, adalah sebuah akifer yang masuk baik yang berupa sumber yang dapat berbentuk terpusat maupun yang tersebar (Gambar 6).

Suatu saat jumlah pengisian air tinggi dalam zona subcutaneous (dibawah kulit) yang permiable (Atkinson and Smart, 1981). Zona ini dijelaskan oleh William (1983), sebagai batuan pada layer yang lebih tinggi yang dapat bertahan dibawah lapisan tanah, tetapi diatas zona jenuh yang permanen. Zona ini sangat penting dalam karst terrain karena dari permeabilitas sekundernya yang tinggi, timbul dari pelarutan kimiawi yang amat sangat. Lebih jauh lagi, perlebaran secara korosi mengurangi dengan penyebab kedalaman sebuah peningkatan permeabilitas kecuali pelebaran master kekar dan sesar (Gambar 7).

Air dapat juga mengalir secara lateral (kearah samping) pada zona subcutneous untuk mengisi dengan jalan melalui rute yang dibuat oleh pelarutan preferential (istimewa) di tempat yang secara geologi menguntungkan seperti misalnya perpotongan kekar utama atau bidang perlapisan (bedding palane) yang terbuka (Williams, 1983). Kapasitas dari rute ini dapat sesuai dengan aliran vadose dan shaft dimana hasil integrasi dari aliran yang lebih kecil mengalir melalui retakan, kekar dan bidang perlapisan (Gunn,1985). Pada rekahan yang sangat rapat, kekar dan bidang perlapisan, aliran ini dapat menjadi difusi dan mengisi saluran dibawah kondisi aliran dasar.

Penyimpanan (storage) dapat menempati zona subcutneous saat sebuah water body di tempat yang tinggi, menjadi cadangan saturasi semusim untuk batuan dasar yang permeabilitasnya yang lebih rendah. Mangin (1974, 1975) dan Friederich (1981) menunjuk ke zona ini sebagai zona epikarstik, yang mana terdiri dari dua level utama, zona soil dan batugamping yang weathered lebih dari 15 sampai dengan 30 feet. Istilah dari subcutneous dan epikarstik dapat dipertukarkan, sekalipun subcutneous lebih banyak dipergunakan.

Dibawah zone subcutaneous atau epikarst, adalah zona yang merupakan tempat penyimpanan yang rendah, zona transisi, yang mana dihubungkan dengan rekahan, kekar, dan intergranular seepage (rembesan antar butir). Pada zona saturasi, storage yang dinamik dapat berada disitu. Tipe storage ini dapat terjadi diatas level spring dalam akifer yang tidak terbatasi dimana pengeringan air secara bebas sebagai aliran drainasi gravitasi dan dibawah level spring dimana cadangan perennialnya dapat sangat besar, tetapi karena sebuah perubahan kecil dalam ujung hirdolik, pelepasannya kecil saja. dimana storage perennial (menahun) dapat berukuran besar, tetapi karena perubahan kecil pada kepala hidrolik, pengisiannya lambat. Dengan begitu air tanah dapat mengalir pada zone perennial baik melalui saluran (conduit) maupun melalui proses difusi (Hobbs dan Smart, 1986).

 

 

 

SUMBER :

- ASC, EkspedisiMaros, 1989.
- ASC, Survey Gua-gua Gombong Selatan, 1993.
- ASC, Survey Gua-gua Purwodadi-Pati, 1994.
- ASC, Karst Hidrologi daerah Gunung sewu dan sekitarnya, 1992.
- ASC, Gua, Air dan permasalahanya, 1989.
- Ko, RKT. Makalah bebas, Dies Natalis HIKESPI, 1993.
- Susanto, Sahid. Melestarikan Gua Bribin, Harian Umum Kedaulatan Rakyat, Agustus 1992.

GIAN ERTIANA TSANI (270110090059)

Follow

Get every new post delivered to your Inbox.